

In vitro SILAC (Stable Isotope Labeling of Amino Acids in Cell Culture) has been proven a powerful technique for quantitative proteomics in cell culture. The method is robust and provides accurate results.¹

The in-vitro SILAC workflow:

Figure 1 shows the workflow of the SILAC procedure to quantitatively determine differences in the protein pattern of two cultures:

Step 1: Culture A ("light") is supplemented with unlabeled amino acids, whereby culture B ("heavy) is supplemented with labeled amino acids. As an example, in culture B, the ${}^{12}C_6$ -lysine is substituted by ${}^{13}C_6$ -lysine.

Step 2: Cells from both cultures are mixed in a 1:1 ratio. The proteins are isolated and digested with Lys-C, a protease which specifically cleaves at lysines.

Step 3: The proteolytic cleavage creates corresponding pairs of peptides stemming from culture A and B, differing by a molecular weight of 6 Da due to the molecular weight difference of the terminal $^{13}C_6$ -lysine. The ratio of the amount of "light" and "heavy" peptides is determined by mass spectrometry.

Figure 1: In-vitro SILAC workflow

Silantes Components for *in-vitro* SILAC Experiments

Silantes offers all components that are necessary for a SILAC experiment. Each component is in a prepared sterile solution and ready for use. The components are available as individual products or in a kit. Each kit consists of:

- 2 x 500 mL Silantes SILAC DMEM or RPMI media free of the amino acids lysine and arginine
- 2 x 50 mL Silantes dialyzed FBS
- Unlabeled L-lysine and L-arginine
- SILAC amino acids L-lysine and L-arginine

¹ Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol.Cell. Proteomics 1, 376–386.

High Quality of Silantes SILAC Components

The SILAC amino acids are available in all isotopic combinations. We guarantee an isotopic enrichment of > 98 atom % with a chemical purity of > 95 %. The isotopic purity is tested by mass spectrometry, whereas the chemical purity is tested by HPLC.

Figure 2 shows the growth kinetics of a model mammalian cell line using Silantes SILAC media and different labeling patterns of the SILAC L-lysines.

The experiment shows that the cells grow well on the Silantes SILAC components.

Figure 2: Kinetics of MDCK cells on Silantes SILAC media

Figure 3 shows the incorporation of ${}^{13}C_{6}$ lysine in an actin peptide (molecular weight = 586 Da) during the preparation of the "heavy" culture for a SILAC experiment

A comparison of the 586 Da peak at t = 0 hours stemming from the unlabeled actin peptide

and the 589 Da peak at t = 8 days stemming from the corresponding labeled actin peptide indicates that the cell culture is fully labeled after 8 days (4 passages). That the nominal difference of the peaks is 3 Da (and not 6 Da) is due to the fact that the ratio m/z (x-coordinate) is 2 (instead of 1).

E-Mail: sales@silantes.com Tel.: 0049 (0) 89 / 500 941 – 0 Web: www.silantes.com